
c a 

1 .  

N A  C O N T R A C T O R  5 
R E P O R T  



NATURAL FREQUENCIES IN COUPLED BENDING AND TORSION 

O F  TWISTED ROTATING AND NONROTATING BLADES 

By G. Isakson and J. G. E i s l ey  

P r e p a r e d  under Grant  No. NsG-27-59 by 

UNIVERSITY O F  MICHIGAN 

Ann Arbor ,  Michigan 

Th i s  r e p o r t  is reproduced photographically 
from copy supplied by the contractor .  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Office of Technical Services,  Department  of Commerce  
Washington, D. C. 20230 -- Price $2.25 

t 



TABLE O F  CONTENTS 

LIST OF ILTLJSTRATIONS 

SUMMARY 

1. I~RODUCTION 

2 .  BLADE ANALYSIS 

Symbols 
Basic Matrices 
Method of Solution 
Steady-State Deformation 
Nondimensional Form 
Numerical Results 
Discussion of Results 

3. SIMPLE MODEL ANALYSIS 

Symbols 
Description of the Model 
Derivation of the Equations of Motion 
Specialization to the Case of Constant Shaft Speed 
Solution of the Pseudo-Static Problem 
Formulation and Solution of the Linearized Equations 
Discussion of Results 

4.  CONCLUDING REMARKS 

APPENDIX 

A. DIFFERENTIAL EQUATIONS OF MOTION 

B. RESULTANT LOADINGS 

C. DEFORMATION OF A BLADE SEGMENT 

D. CENTRIFUGAL FORCE COUPLING 

REFERENCES 

V 

vi i 

1 

3 
3 
6 

14 
15 
18 
27 
27 

34 
34 
36 
37 
42 
46 
48 
50 

63 

64 

66 

70 

74 

77 

i ii 



TABLE 

I. Beam Properties 

LIST OF ILLUSTRATIONS 

Page 

28 

FIGURE 

2.1. Blade axes. 7 

2.2. Nomenclature and sign convention for cross-section coordinates, 
displacements, bending moments, and shears. 7 

2.3. Blade segment rotation. 7 

2.4. Effect of twist on natural frequencies of nonrotating blades. 29 

2.5. Natural frequencies of rotating blade No. 1. 30 

2.6. Natural frequencies of rotating blade No 2 31 

2.7. Effects of centrifugal force coupling on blade No. 2. 32 

3.1. Model coordinates. 37 

3.2* Effect of mass offset on pseudo-static displacements of model. 51 

3.3. Effect of mass offset on natural vibration characteristics 
of model. 53 

3.4. Effect of mass offset on pseudo-static displacements of model. 54 

3.5. Effect of mass offset on natural vibration characteristics 
of model. 55 

3.6" Effect of bending hinge orientation on natural vibration 
characteristics of model. 56 

3.7. Effect of rotational velocity on pseudo-static displacements 
of model. 57 

3 -8. Effect of rotational velocity on natural vibration character- 
istics of model. 58 

V 



LIST OF ILLUSTRATIONS (Concluded) 

FIGURE Page 

3.9. Response of model as determined by nonlinear and linearized 
differential equations. 60 

vi 



SUMMARY 

A Holzer-Myklestad type of procedure, using a matrix formulation, is de- 
veloped for the determination of the natural vibration characteristics of a 
pretwisted rotating blade in coupled bending and torsion. The nonrotating 
blade is considered as a special case. Results of a limited parametric study 
are presented. 
be an appreciable effect of centrifugal forces in coupling the bending and 
torsional vibrations. 

It is found that in the case of the rotating blade there can 

In order to investigate the effects of Coriolis forces and the nonlinear 
effects of large angular displacements, a study is made on the basis of a 
simple model. Numerical results indicate that the Coriolis forces may intro- 
duce substantial.phase differences between bending and torsional vibration. 
Limited numerical results on the nonlinear effects indicate that these effects 
decrease slightly the frequency of the characteristic motions as determined 
from a linearized analysis and introduce some coupling between the character- 
istic motions. 

vi i 



1. INTRODUCTION 

I n  a previous report' the  natural vibration c h a r a c t e r i s t i c s  of r o t a t i n g  
twisted blades were s tudied f o r  the spec ia l  case of coincident mass and e l a s -  
t i c  axes. This eliminates coupling between bending and to r s iona l  vibrat ion,  
and the  problem was studied as one i n  bending v ib ra t ion  only,  Bending de- 
formation about both p r inc ipa l  axes of the cross sect ion w a s  considered. 

The present work represents an extension of t h i s  previous work t o  the 
case of noccoincident mass and e l a s t i c  axes, t h a t  is ,  the case of coupled 
bending and tors ion .  This case has a l ready been t r e a t e d  a n a l y t i c a l l y  i n  
ra ther  complete fashion i n  Ref. 2 ,  the problem being formulated i n  terms of 
governing d i f f e r e n t i a l  equations and a l s o  i n  terms of energy pr inc ip les .  How- 
ever,  very few results a r e  presented i n  t h a t  reference,  and they a r e  f o r  a few 
spec ia l  cases of a r a the r  r e s t r i c t i v e  nature.  

I n  the  present work a d i f f e r e n t  analytical  approach has been used. It 
involves e s s e n t i a l l y  an extension of the  Holzer-Myklestad method f o r  de t e r -  
mining the bending v ib ra t iona l  cha rac t e r i s t i c s  of a beam t o  the case a t  hand. 
The Holzer-Myklestad method had previously been extended by Targoff3 t o  the 
case of bending of twisted r o t a t i n g  blades and applied i n  Ref. 1. 
found t o  be p a r t i c u l a r l y  well-suited t o  automatic d i g i t a l  computation, and, 
f o r  t h a t  reason, has been extended i n  the present work t o  include to r s ion  as 
well, and has been applied i n  a l i rmted parametric study. 

It was 

An e f f e c t  of cen t r i fuga l  forces i n  coupling bending and to r s iona l  vibra- 
t i o n ,  considered i n i t i a l l y  i n  Ref. 2 ,  i s  taken i n t o  account i n  the present 
work. It a r i s e s  when the mass and e l a s t i c  axes of the  blade a re  not coinci-  
dent.  

It should be remarked t h a t  the inclusior, of t o r s i o n a l  deformation compli- 
ca tes  the  e f f e c t s  of pretwist  and r o t a t i o n  considerably. 
able s teady-state  or "pseudo s t a t i c "  to rs iona l  deformation of the r o t a t i n g  
blade i n  some cases. This i s  due t o  centr:fugal tw i s t ing  moment which, i n  the 
case of negative pretwist  and positive. pi tch,  tends t o  t w i s t  the  blade nega- 
t i v e l y ,  and a l s o  t o  the twist ing moment associated with t e n s i l e  stress i n  the 
longi tudinal  fibers, the  so-called "centrifugal untwisting moment. 
two e f f e c t s  oppose each other  i n  the normal case, and the  extent  t o  which one 
or  the  other  predominates depends primarily upon the amount of pretwist  and 
t h e  p i t c h  s e t t i n g  of t h e  blade. 
t a t i o n  of some r e s u l t s  are given i n  Ref' 4. 

There may be a s i z -  

These 

An analysis  of t h i s  deformation and presen- 

Additional e f f e c t s  r e l a t e  t o  a departure of the to r s iona l  s t i f f n e s s  from 
T h i s  departure i s  associated with the value provided by Saint  Venant theory. 
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inclination of the longitudinal fibers of the blade with respect to the elas- 
tic axis, due to both pretwist and torsional deformation. The normal stresses 
in these fibers can be seen to have components in the plane of a cross section 
and to exert a torsional moment about the elastic axis. 
sources. Firstly, there are normal stresses associated directly with torsional 
deformation that are present even in a nonrotating blade. These stresses may 
introduce a substantial nonlinearity into the torsional stiffness. 3-5 
there are normal stresses associated with centrifugal forces, contributing to 
the torsional stiffness in a manner which is essentially linear for practical 
deformations t'nat is, there is a linear relationship between torqAe and elas- 
tic t~ist.3,~ Some theoretical results for the case of torsional vibration, 
with some o r  all of these effects included, are presented in Refs. 4 and 6. 

They arise from two 

Secondly, 

Because of the possibility of substantial pseudo-static torsional deforma- 
tion and nonlinearity in the torsional stiffness, an accurate determination of 
the natural frequencies of vibration of a twisted blade should be based on 
linearization with respect to the pseudo-static deformation. This has not been 
done explicitly in generating the results presented in the present report. The 
values of pretwist selected must be interpreted to include pseudo-static de- 
formation. This facilitates comparison with the results of Ref. l, where 
pseudo-static torsional deformation would have an influence on bending vibra- 
tional characteristics, and where the values of pretwist must be similarly in- 
terpreted to include such deformation. 

Another interesting aspect of the rotating blade vibration problem is dis- 
cussed in Ref. 7. It is shown that Coriolis forces, or so-called "secondary 
inertia'' forces, associated with the combined vibrational and rotational mo- 
tion introduce a phase difference between the bending and torsional vibration. 
In order to investigate this effect more fully and to- investigate the non- 
linear effects of substantial angular displacements on the dynamic character- 
istics of a rotating blade, an additional study, reported in Section 3, was 
conducted on the basis of a simple model. The nonlinear effects considered 
are those associated with inertia forces. Nonlinearity in the torsional 
stiffness, as discussed above, and the effects of centrifugal tension on the 
pseudo-static deformation and on torsional stiffness are not included, al- 
though they could, in any extension of the present work, be included without 
undue complication. 
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2.  BLADE ANALYSIS 

SYMBOLS 

A = G J e  + Tkz + EBI(@')~ 

B1, B2 sect ion constants defined i n  Appendix A 

E Young I s modulus 

EI1, E12 bending s t i f f n e s s  about major and minor p r inc ipa l  centroidal  axes, 
respect ively 

- - 
E11  = EI l /EI io ,  E12 = EIz/EI2, 

e dl"stance between mass and e l a s t i c  axis, pos i t i ve  when m a s s  ax is  
l i e s  ahead 

- 
e = e/R 

dis tance between area centroid of t e n s i l e  member and e l a s t i c  ax is ,  
posi t ive when centroid l i e s  ahead 

eA 

- 
eA = eA/R 

dis tance a t  root  between e i a s t i c  a x i s  and axis  about which blade is  
ro ta t ing ,  pos i t i ve  when e l a s t i c  axis  l i e s  ahead 

eo = eo/R 

GJe e f f e c t i v e  t o r s i o n a l  r i g i d i t y  

- 
G J e  = GJe/EIl0 

mass moment of i n e r t i a  of c r o s s  section about f and 7 axes, r e -  
spect ively,  defined so  t h a t  corresponding moments f o r  an element dx 
a r e  I dx and I dx 

If' I ?  

f I 
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kA polar rad ius  of gyrat ion of cross-sect ional  a r ea  e f f ec t ive  i n  
carrying t e n s i l e  s t r e s s e s  about e l a s t i c  a x i s  

mass r a d i i  of gyrat ion about 5 and 7 axes, respect ively kc’ k? 
P length of blade segment 
- 
P 

M1, M2 bending moment about major and minor p r inc ipa l  axes of c ross  
sec t ion ,  respect ively,  when cen t r i fuga l  tension i s  assumed t o  
a c t  along undeformed pos i t i on  of e l a s t i c  a x i s  

m mass of blade segment 

px, pc ,  pq r e s u l t a n t  loadings per u n i t  length i n  the  x,(,v d i rec t ions ,  
respect ively 

Q r e su l t an t  torque about e l a s t i c  ax i s  a t  any cross  sec t ion  

sx, 95, q7 r e s u l t a n t  t o r s iona l  loadings per u n i t  length about the  x,(,q 
axes, respect ively 

R blade rad ius  

T cen t r i fuga l  tension, ~ 1 ~ ~ 1  

N 

L 
i =1 

TI = Pil iXi  

i =1 

U displacement i n  the  x d i r ec t ion  

v1, v2 shearing forces  i n  the  d i r ec t ion  of the  minor and major pr incipal  
axes of the  c ross  sec t ion ,  respect ively 

X?Y,Z  coordinate system which r o t a t e s  with blade (Fig.  2 . 2 )  

- x = x/R 
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B angle between major principal axis of cross section and plane of 
rotation, either in the undeformed or pseudo-static state 

A B  increment in B between blade segments 

displacements of the elastic axis in the y and z directions, 
respectively 

6y' 6z 

61, 62 displacements of the elastic axis in the direction of the minor 
and major principal axes o f  the cross section, respectively 

tl, 11 coordinates in direction of minor and major principal axes, 
respectively 

8 total twist in blade between x = 0 and x = R,  8 = -RBI 

P mass per unit length of blade 

- 
i) = p/po 

d torsional displacement, positive when leading edge is up 

0 natural frequency of blade vibration 

R rotational velocity 

[ I  rectangular matrix 

0 column matrix 

Other symbols are defined in the text. 

Subscripts 

n order of natural mode 
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0 value at x = 0 

T value at x = R 

( ) I ,  ( ) "  differentiation with respec-t to x, except in Appendix C. 

BASIC MATRICES 

The governing differential equations of motion for a rotating blade with 
offset mass and elastic axes have been derived and are reported in Ref. 2. 
These equations are repeated in Appendix A. 
tions have been adapted to a matrix formulation which permits rapid numerical 
analysis. 

In the present report these equa- 

This method is essentially an extension of the one presented in Ref. 
1. 

The coordinate axes of the blade are shown in Fig. 2.1. The cross section 
coordinates and displacements are shown in Fig. 2 - 2 ,  The blade is divided into 
a number of spanwise segments, not necessarily equal in length. The mass of 
each segment is assumed concentrated at its center, and the bending stiffnesses, 
E11 and EI2, the torsional stiffness, GJe, and the angle of incidence, @, are 
assumed constant between masses, appropriate average values being selected. 
The built-in twist is accounted for by relative rotations of adjacent uniform 
bays (between masses ) about a spanwise axis , the change in angle A @  being 
equal to the total twist in a segment and occurring just outboard of the mass 
(Fig. 2.3). 

The quantities VI, M1, 8;, 81, V2, M;2, &, 82, Q, and $d (Fig. 2 . 2 ) ,  which 
apply when the beam i s  at its maximum displacement in a free vibration, are 
defined at stations along the beam and may be represented at any station in 
the form of a column matrix: 

The elements of this matrix will vary along the beam in such a manner that 
Moving from the the variation can be considered to occur in a series of steps. 
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LTENSION AXIS 
c.0. A X I S  

I 
Fig. 2.1. Blade axes. 

€ i 

(a  I ( b )  

Fig. 2.2. Nomenclature and sign convention for cross-section coordinates, 
displacements, bending moments, and shears. 

I 

Fig. 2.3. Blade segment rotation. 
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tip toward the root of the beam, the change in ( A ]  occurring from a station 
immediately outboard of one mass to a station immediately outboard of the next 
mass can be broken down into three steps, the first involving movement across 
the mass, the second involving movement from one end to the other of a weight- 
less uniform bay, and the third involving movement across the discontinuity in 
B. 

The relationship between the ( A )  matrices as they apply at the two ex- 
tremes of this travel can be represented as follows: 

where [F], [E], and [R] are rectangular matrices representing linear rela- 
tionships corresponding to the three steps discussed previously. 

The [F] matrix, relating the ( A )  matrices on either side of a concen- 
trated mass, is written as follows: 

F =  

where 

1 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

1 

0 
0 

0 

0 

0 

0 

0 

0 

0 

F2 3 
1 
0 

0 

0 

0 

0 

0 

0 

F 14 

F24 
0 

1 

F54 
0 

0 

0 

F94 
0 

0 

0 

0 
0 

1 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

1 

0 

0 

0 

0 

0 

0 

0 
0 

0 

F6 7 

1 

0 

0 

0 

Fl8 

0 

0 
0 

F5 8 

F6 8 

0 

1 

F98 
0 

0 

0 

0 
0 

0 

0 

0 

0 

1 

0 

F l l O  

0 

0 
0 

F5 10 
0 

0 

0 

F9 10 
1 

8 



F210 = - p l e d 2  

~ ~ 1 0  = - 2pfeSt2sin p cos B - p l P e ,  s i n  p 

F67 

F~~ = - ple$sin p cos p 

The der iva t ion  of the  elements of t h i s  matr ix  is  given i n  d e t a i l  i n  Ap- 
pendix B, except f o r  the  contr ibut ion of cent r i fuga l  force coupling, which i s  
t r e a t e d  separa te ly  i n  Appendix D. It i s  seen t h a t  only the  shear forces ,  bend- 
ing  moments, and torque a re  changed, since there  are no d i scon t inu i t i e s  i n  
slope o r  displacement. The changes i n  shear force a r e  due p a r t l y  t o  t h e  in-  
er t ia  force associated with t h e  v ibra t iona l  motion of t he  mass and p a r t l y  t o  
the  component of cent r i fuga l  force normal to  t h e  undeformed pos i t ion  of the  
e l a s t i c  ax i s .  P a r t  of the  change i n  torque i s  r e l a t ed  t o  the  change i n  shear,  
s ince the  m a s s  and e l a s t i c  axes do not coincide, and p a r t  i s  due t o  the  i n e r t i a  
force associated with the  to r s iona l  v ibra t iona l  motion. The change i n  bending 
moment, except t h a t  associated with centr i fugal  force coupling, i s  f i c t i t i o u s  
and arises from a spec ia l  fea ture  of the analysis .  This fea ture  involves the  
replacement of the  component of the  centr i fugal  force  p a r a l l e l  t o  the  unde- 
formed pos i t ion  of the  e l a s t i c  ax i s  by an equal force along the  l i n e  of the  
undeformed a x i s  and an appropriate  couple to  provide s t a t i c  equivalence. The 
changes i n  bending moment indicated i n  the  [F] matrix a r e  then due only t o  the  
appl ied couple, the  moment due t o  the  force appl ied along the  undeformed axis 
being accounted f o r  i n  the  [E] matrix. When moments due t o  both sources are 
considered, the  d iscont inui ty  i n  bending moment disappears.  Note t h a t ,  on 
the  bas i s  of t h i s  procedure, the  bending moment a t  any s t a t i o n  is  not  M, but  
r a t h e r  M plus  t h e  moment of the t e n s i l e  force T ac t ing  along the undeformed 
e l a s t i c  ax i s .  

The elements i n  the [E]  matrix are found by the  so lu t ion  of the  d i f f e r -  

These equations and the i r  solut ions are given i n  Appen- 
e n t i a l  equations of combined bending and tors ion of the weightless uniform 
bay between masses. 
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dix C. The resulting [E] matrix is: 

E =  

- 
1 

E2 1 

E3 1 

E4 1 
0 

0 

E7 1 

E8 1 
0 

El01 - 

0 

1 

E32 

E42 

0 

0 

E72 

E82 
0 

E102 

0 0 

0 0 

E33 E34 

E43 E44 
0 0 

0 0 

E73 E74 

E83 E84 
0 0 

E103 E104 

0 

0 

E35 

E45 
1 

E65 

E75 

E85 
0 

0 

0 

E36 

E4 6 

0 

1 

E76 

E86 

0 

El06 

0 0 

0 0 

E37 E38 

E47 E48 
0 0 

0 0 

E77 E78 

E87 E88 
0 0 

E107 El08 

0 

0 

E39 

E4 9 
0 

0 

E79 

E89 
1 

E109 

0 

0 

E313 

Ea 10 
0 

0 

0 

0 

0 

Elolc 
-. 

where, if we define 

the components of E are given below. The quantities pi, ai, and fi are de- 
fined in Appendix C. 

I J- 
1- 

( a2a6P4 -a3a8P3 )cosh p1 I + [ -a2a6P4+a3a8(P3+1 ) Icosh p2 I -asas E31 =---’ 
f2EI1 1 

( 2 . 5 )  
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E34 = - a l E I 1 E s  

( 2 . 7 )  

E48 = E37 
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a2 

f*(P?-PZ) 
E49 = 

12 



E107 = -a3E12E105 



1 t 

Note that F 1  and 82 are positive for increasing deflection in the positive x 
direct ion. 

The [R] matrix serves to rotate the coordinate axes through the angle A5 
and is written as follows: 

Dl  = 

- 
cos A@ 0 0 0 

0 cos Ap 0 0 

0 0 cos Ap 0 

0 0 0 cos Ap 
sin A@ 0 0 ' 0  

0 sin Ap 0 0 

0 0 sin Ap 0 

0 0 0 sin A@ 

0 0 0 0 1 0 0 0 0 

-sin A D  

0 

0 

0 

cos A@ 

0 

0 

0 

0 

0 

0 0 0 

-sin A@ 0 0 

0 -sin A @  0 

0 0 

0 0 0 

cos A@ 0 0 

0 cos Ap 0 

0 0  

0 0  

1 0  

0 0 cos A@ 0 0 

0 0 0 

0 0 0 

(2.8) 

METHOD OF SOLUTION 

By a successive multiplication of the appropriate matrices, a linear re- 
lationship can be established between the (A) matrices at the root and tip of 
the beam 

Recognizing that the shears, bending moments, and torque are zero at the 
tip of the beam, the (A)tip matrix can be reduced to a five-element matrix, 
and the corresponding five columns can be eliminated from the first [F] matrix 
at the tip of the beam; successive multiplications will then yield a 10 x 5 
matrix product. 

In order to satisfy the boundary conditions at the root of the beam, the 
determinant of a 5 x 5 matrix formed from appropriate elements of the [C] 
matrix must equal zero. For example, for a cantilever blade the third, fourth, 



seventh, eighth, and tenth rows form the 5 x 5 determinant, and for a fully 
articulated blade with torsional restraint, the second, fourth, sixth, eighth, 
and tenth rows form the determinant. Other boundary conditions, such as 
elastic restraint at the root, can be handled easily. 

The elements of this determinant will be polynomials in UP, and upon 
expansion a polynomial equation in & will be obtained. 
natural frequencies of the blade could be determined by solving for the roots 
of this equation; however, such a procedure is far toocumbersome to be feas- 
ible. 

Tn principle, the 

A more practical procedure involves the introduction of trial values of LU 
into the various F ]  matrices and evaluating the elements of all matrices 
numerically. The matrix multiplications can then be carried out numerically, 
and the appropriate determinant evaluated. The value of this determinant, 
which may be termed the "residual," may then be plotted versus LU or u9 and 
the location of the zeros of the residual will determine the natural fre- 
quencies of the blade. 

STEADY-STATE DEFORMATION 

As pointed out in the introduction, there may be a sizable steady-state 
or "pseudo-static" torsional deformation of the rotating blade in some cases. 
The loadings which produce this deformation are given in Appendix B along 
with those induced by the lateral and torsional vibratory motion. It is 
possible to determine this pseudo-static deformation and to then find the 
natural frequencies based on linearization with respect to the pseudo-static 
deformation. In the numerical results which follow this has not been done 
explicitly. The valuesof pretwist selected should be interpreted to include 
the pseudo-static deformation. 

In order to determine the pseudo-static deformation let us define the 
following matrices: 

[A)% = column matrix of blade 

[t)i = column matrix of blade 

[FoJi = matrix [F] with LU = 0, 

column matrix of steady (d)i = 

variables just outboard of mass i 

variables just inboard of mass i 

across mass i 

state quantities across mass i 

[g)i = column matrix of steady state quantities across bay between 
masses i and i+l 

[D]i = [Rji[E]i across bay between masses i and i+l. 



Then it follows t h a t  

(2.10) 

and 

Star t ing  a t  t he  root  where 

where 

and i n  h i c h  i decreases a s  one proceeds from l e f t  t o  r i g h t .  
Equation ( 2 . 1 2 )  may be wr i t ten  

(2.11) 

we have 

(2.12) 

Satisfying the  boundary conditions a t  the  root  and the  t i p  of the blade,  Eq. 
(2 .12)  may be reduced t o  

16 



where 

(2.14) 

and where K = 1 corresponds t o  a f ixed root ,  and K = 2 corresponds t o  a f u l l y  
a r t i c u l a t e d  root  ( ~ 1  = Q = 0 )  
( h ( K ) ]  i s  a f i v e  element column matrix. 

[H(K) 1 i s  a square matrix of order 5,  and 

I n  the case of a f ixed roC)t, [H(l) ] i s  obtained by de le t ing  rows 1, 2, 5 ,  
6, and 9 and columns 1, 2, 5 ,  6 ,  and 9 from [HI, and ( h ( 1 ) )  i s  obtained by 
de le t ing  rows 1, 2 ,  5, 6, and 9 from ( h ) ”  
a r t i c u l a t e d  blade, [H(2)] i s  obtained by deleting rows 1, 3, 5, 7, 9 and 
columns 1, 2, 5 ,  6,  and 9 from [HI ,  and [ h ( 2 ) ) i s  obtained by de le t ing  rows 1, 
3 .  5, 7, and 9 from (h ) .  

Similarly,  i n  the case of a f u l l y  

Equation (2.13) may be solved f o r  ( A ( ’ ) ) ,  and ( A )  then determined f o r  a l l  
s t a t i o n s  by applying Eqs.(2.10) and (2.11), s t a r t i n g  a t  the t i p  and progress- 
ing toward the root .  

The matrices ( d )  and [g)  are each ten-element column matrices which a r e  
obtained from the steady s t a t e  terms i n  Appendices B and C. From Appendix B, 

d5 = p i @  cos B(eo+e cos B )  

& = - p f  x eS1 
2 

dp = (1,,-1c)lR2 s i n  B cos B - Fleeo@ s i n  . 

Appendix C shows t h a t  the (g )  matrix can be derived from the [E] matrix i f  
the terms involving M2 and Q a re  ext.racted and & and Q a r e  replaced by TeA 
an5 Tk;p’, respect ively.  Thus, 

(2.16) 
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NONDIMENSIONAL FORM 

It is convenient and desirable to treat the problem in nondimensional 
form. The ( A )  matrix can be redefined in terms of nondimensional forces, 
moments, and deformations as follows: 

The corresponding nondimensional form for the [F] matrix follows: 

0 0 0  "1 - - 
0 0 F14 0 0 0 F18 0 

1 F23 F24 0 0 0 
- - 

[F] = 

'_I 0 0 0  0 0 0  L o  O 
where 

18 

(2.18) 





And 

[E] = 

whe r e 

0 0 0 0 0 0 0 E65 1 - - - c - - - - - I  
E71 E72 E73 E74 E75 E76 E77 E78 E79 E710 - - - - c - - - 

(2.21 ) 
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- - 
E48 = E37 (2 21) 
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( 2  21) 
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The nondimension quantities used above are defined as follows: 

( 2 . 2 2 )  



( 2 . 2 2 )  

i =1 
N N 

where N denotes the number o f  masses outboard of  the bay under consideration. 
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The (d) matrix has the components 

and the components of (g) are 

For the case of zero rotational velocity, the E] matrix is obtained 
When this substitution is made in the [E] directly by substitution of p = 0. 

matrix, some of the elements are found to be of indeterminate form and a 
limiting process must be applied. This results in: 



E105 = 

- 

1 

0 

- 
- E75 

1 

- 2-2 
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NUMERICAL RESULTS 

A program of computations was performed for two representative cantilever 
blades. 
were chosen to have the same bending properties as blades for which numerical 
results are reported in Ref. 1. For these two, the section constants 11, 12, 
B1, B2, GJe, kA correspond to those for a thin-walled rectangular section, and 
it was assumed that some nonstructural mass was distributed in such a way as 
to provide an offset between the mass and elastic axes, and to provide suffi- 
cient mass moment of inertia to make the uncoupled first torsional frequency 
and the second uncoupled flapwise frequency coincide. 
is a lightly coupled system as far as flapwise bending-torsion is concerned. 

The properties of these blades are given in Table 1. mey 

The result in both cases 

In both cases the blades were divided into ten segments, the cantilever 
root condition was applied, and the four lowest frequencies were determined. 
A range of values of pretwist and rotatima1 velocity was 
sults are presented in Figs o 2 -4-2 -6 o 
with rotary inertia neglected are presented ir, Fig 
force coupling neglected in Fig. 2.7. 

chosen, and the re- 
In addition, results for beam No. 2 

2.6, and with centrifugal 

DISCUSSION OF 

The irxfluence of twist on the natural frequencies of nonrotating blades 
The fundamental frequency in each case is almost com- 

The higher frequencies are affected by the coupling be- 
is shown in Fig. 2,4, 
pletely unaffected. 
tween flapwise bending and torsion, and between all three types of deformation 
when twist is introdured. 

The combined effects of rotation and twist on blade No. 1 are illustrated 
in Fig. 2.5. In the untwisted, nonrotating case the fundamental mode is iden- 
tified as predominantly flapwise bending; the second mode is uncoupled chord- 
wise bending; and the third and fourth modes are coupled flapwise bending and 
torsion. The effect of rotation and twist is to couple the first two modes. 
A comparison of the results in Fig. 2.5 with results in Ref. 1 for a beam with 
the same bending properties but with torsion neglected shows that essentially 
no change has been introduced by the preserice of torsion. The fourth frequency 
in Fig. 2 - 5  differs slightly from the third frequency for the beam in Ref. 1, 



TABLE I 

BEAM PR0l"IES 

Beam No. 1 2 

- 
e 

k A 

BT 

Y2 

12[ in.4] 

B1[ in.6] 

B2 [ in. ] 

2.28 5 10 -l 

1.000.10-2 

0.25 L 

0 

0.015522 

0 

l.ooo*lo-l 

2.355 h3t 

( 2.355 -10) h3t 

32.692 h5t 

0 

1.153 

2.190.10-5 

5.832.10-~ 

6.225 

1 .ooo . 

0.15 L 

0 

0 .Oh926 

0 

1.000.10-2 

8.1987 h3t 

( 8.1987.102)h3t 

15.345 h't 

0 

1.405 

2.402 10- 

7.114 

"Aluminum is assumed. 
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Fig. 2.4. Effect of' twist on natural frequencies of nonrotating blades. 
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while the  t h i r d  frequency i n  F ig .  2.5 i s  a new one intro3uced by the presence 
of t o r s i o n .  It is  seen t h a t  t w i s t  has l i t t l e  e f f e c t  or, the t h i r d  and fourth 
frequencies shown i n  F ig .  2 .5  A small difference between the  r e s u l t s  i n  Ref. 
1 and the  present r e s u l t s  i s  introduced by the inclusion of r o t a r y  i n e r t i a  
i n  the  present  analysis  

The r e s u l t s  f o r  blade No. E presented i n  Fig 2,6 show t h a t  the  funda- 
mental frequency i s  e s s e n t i a l l y  unchanged by the presence of t o r s ion  when com- 
pared with r e s u l t s  f o r  a similar blade reported i n  Ref, 1 For t h i s  blade the 
fundamental mode is  predomiriantly flapwi se  bending Tkc second and t h i r d  modes 
f o r  t he  untwisted, nonrotating blade a r e  smple? flapwi s~ bending and tors ion ,  
and the  fou r th  mode i s  uncmpled chordwisf bending When ro t a t ion  and t w i s t  
a r e  added, the three  higher mzdes exhibi t  considerable coupling, and it be- 
comes d i f f i c u l t  t o  reach any general  con-lusions When compared w i t h  the  r e -  
s u l t s  i n  Ref 1 f o r  a similar blade w i t h g u t  t o r s iQn ,  i t  i s  seen t h a t  the e f -  
f e c t  of t he  presence of t o r s ion  i s  t o  introduce a T W  frequency and t o  modify 
the o the r  two frequencies a moderate amount ?.at these two frequencirs a r e  
not modified more by th r  presecce of to rs ion  i s  t o  Se expected since the coupl- 
ing  f o r  t h i s  bladf (and a l s o  f 3 r  blade No 
of o f f s e t  between the mass and e l a s t i c  axes, i s  r e l a t i v e l y  s m a l l .  

I), as represented by the  amount 

The neglect of ro t a ry  i n e r t i a  has a nrgl',giblc e f f e p t  on the na tu ra l  f r e -  
quencies except for those cases i n  which thcre i s  chQrdwise bending.. 
p l e ,  i n  the  case of the  untwisted beam N 3 .  2 the m l y  frequency which i s  ap- 
preciably a f f ec t ed  i s  the  unccmpled chordwi s~ bendir,g frequency 
of t h i s  e f f e c t  i s  shown i n  Fig c".6L 

For e x a m -  

The magnitude 

The e f f e c t s  of cen t r l fuga l  force  zoupling on beam No. 2 are shown i n  
F ig .  2.7, 
8 = 0" and 5 0 " .  
avoid confusion i n  Flatting;. 
modifled by a s l i g h t l y  smaller a m u n t .  
uncoupled chordwise bending (the- i x r t h  frzquency f o r  the  nonrotating beam) 
i s  e s s e n t i a l l y  unaffected, as i s  ths  Q = 30" Case f x  the t h i r d  coupled fre- 
quency. 
can have ar, appreciable e f f e c t  3n somg of the v ib ra t ion  c h a r a c t e r i s t i c s .  

Curves with and without centr i fugal  force  coupling a r e  shown f o r  
Only the  9 = 0" zase i s  shown f3r the second frequency t o  

The €I = 30° case f= r  t ce  second frequenpy i s  
Th. 9 = 0" case which represents  

It car, be seen fron! these r e s u l t s  t h a t  ccc f r i fkga l  force  coupling 

. 



3. SIMPLE MODEL ANALYSIS 

SYMBOLS 

8 1 2 8 2  funct ions defined immediately following Eq. (3  .l3) 

e o f f s e t  of mass c .g .  from supporting rod, pos i t ive  forward 

- - 
e nondimensional form of e ,  e/r 

u n i t  vectors  along the  x,y,z axes respec t ive ly  ;” 
,J7k 

I moment of i n e r t i a  of mass m about supporting rod 

moment of i n e r t i a  of mass m about i t s  own c .g .  IO 

IF moment of i n e r t i a  of flywheel 

K k ine t i c  energy of system 

ke 

m 

MT 

MT 

P 

r 

+ 
R 

t 

s t i f f n e s s  of bending spr ing 

s t i f f n e s s  of t o r s ion  spr ing  

mass 

shaf t  torque 

nondimensional form of %, */mr2$ 

d i f f e r e n t i a l  operator 

length of supporting rod from shaft t o  mass m 

radius  vector from o r ig in  t o  element of mass dm 

time 

U po ten t i a l  energy of system 

+ 
V ve loc i ty  vector  of mass element dm 

V magnitude of v 
+ 
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X?Y,Z axes fixed to supporting rod and mass assembly 

Y y-coordinate of mass element dm 

xF,yF,zF stationary axes 

a orientation angle of bending hinge axis 

B angle simulating built-in twist 

7 built-in coning angle 

E phase lag of motion in 4-coordinate relative to motion in Q- 
coordinate 

8 elastic displacement about bending hinge 

QS pseudo-static value of Q 

8 departure of Q from €9, 
- 

- 
QO amplitude of 5, also initial value of 5 
- 
P nondimensional radius of gyration of mass m about supporting rod, 

JQiZ 
- nondimensional radius of gyration of mass m about its own c.g., PO JQZ 

T nondimensional form of t, Rt 

4 elastic displacement about torsion hinge 

4, pseudo-static value of # 

d 
70 initial value of 7 
d6 initial value of # I  

81 amplitude of 5 

departure of 6 from d, 

- - 

- 

$ angular displacement of shaft 

cu angular velocity vector of x,y,z frame 
+ 
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-+ ~ , ~ , ~  components of w along the x,y,z axes, respectively 

- 
Lu natural frequency of characteristic oscillation 

G,G first and second natural frequencies of characteristic oscillation 

R rotational velocity of shaft 

DZSCRIFCIOK OF THE NOEEL 

In order to examine some effects of non inearity and Coriolis forces in 
the free vibrations of a rotating elastic blade in coupled bending and torsion 
and to consider the effects of certain parameters on the static deformation of 
the rotating blade, a simple model with a small number of degrees of freedom 
is set up and analyzed. 

The model consists of a rigid weightless rod on one end of which is mounted 
a mass and the other end of which is connected to a rotating shaft. The connec- 
tion to the shaft is through a hinge with axis normal to the rod and set at an 
angle to the shaft. A spring, restraining motion about this hinge, simulates 
bending stiffness. In addition, the rod is free to rotate about its own axis 
against the action of a spring, which simulates torsional stiffness. The mass 
is assumed to be distributed along a line normal to the rod, simulating the 
major principal axis of a blade cross section, with its center of gravity dis- 
placed from the rod, simulating an offset of the mass axis of the blade from 
the elastic axis. 

The orientation of the model relative to a set of fixed axes and the gen- 
eralized coordinates defining its configuration are shown in Fig. 3.1. The 
final orientation is reached by aligning the model initially with the fixed 

%” ’F’ ‘F axes and then executing a sequence of rotations. The fixed axes 
form an orthogonal set oriented so that the xF-axis is coincident with the 
shaft centerline. Their origin is at the intersection of the rod and the 
shaft centerline and is coincident with the origin of the model axes x, y, z .  
The x-axis lies along the rod, the y-axis is parallel to the line along which 
the mass lies, and the z-axis completes the orthogonal set. 

The model is initially aligned so that the x, y, z axes are coincident 
with the XF, y ~ ,  ZF axes, respectively. The following rotations, positive 
in the right-handed sense, of the x, y, z frame are then executed in sequence: 

1. A rotation about the zF-axis through the angle JI to the position XI, 
y1, z1. JI then defines the shaft rotation. 

2.  A rotation about the yl-axis through the angle -7 to the position @, 

y2, z2. -7 then defines a built-in coning angle. 



Bending Hinge Axis 

Supporting Arm 
and Torsional 

\ 
\ 

‘xr 
F lyw heel 

Fig. 3 .l. Model coordinates. 

3. A rotation about the x2-axis through the angle 01 to the position x3, 
y3, z3.  The ys-axis then defines the position of the hinge axis. 

4. A rotation about the y3-axis through the angle -8 to the position XQ, 

y4, z4.  This represents a rotation about the hinge axis simulating 
bending displacemnt . 

5 .  A rotation about the Xq-axis through the angles f3 and d in sequence 
to the final position x, y, z. The angle f3 simulates built-in twist, 
and the angle 4 elastic twist. 

The angles a, /3, and y are constants and constitute parameters in the 
problem. 
shaft rotation, bending, and torsional displacement, respectively. 

The angles 9,  8 ,  and d are generalized coordinates representing 

DERIVATION OF THE EQUATIONS OF MOTION 

The equations governing the motion of the model are now derived using 
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Lagrange's equation. 
f o r  the k ine t i c  energy of the system i n  terms of the generalized coordinates.  

Toward t h i s  end it i s  necessary t o  obtain a n  expression 

Assuming a flywheel of moment of i n e r t i a  IF t o  be mounted on the  s h a f t ,  
and defining m as the  magnitude of t he  mass mounted on the  rod, the  k i n e t i c  
energy of t h e  system may be wr i t t en ,  

where v i s  the  magnitude of the  ve loc i ty  vector  f of an  element of t he  mass m .  

+ v may be developed from the  r e l a t i o n ,  

+ + +  
v = U X R  ( 3 . 2 )  

+ 
where 0) i s  the  angular ve loc i ty  vector  of the x, y, z frame and 3 is  the radius 
vector of dm. Subst i tut ing 

+ - + +  
R = r i  + y j  (3.4) 

+ + +  
where i, j ,  k a r e  u n i t  vectors along t h e  x, y, z axes, respectively,  i n t o  Eq. 
(3.2) t h e  following i s  obtained, 

Thus, 

v2 = y 2 g  + r'o: + (ywx-ryr)2 

and Eq. ( 3 . 1 )  may now be wr i t ten ,  

(3.7) 1 1 + 1 I ( U + U ~ )  2 2  - mrew, "y K = 2 -  IF$^ + ~ m . r 2 ( U $ ~ )  2 
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Neglecting gravity forces, the potential energy of the system may be written 
as follows, 

where k~ and kb are the spring constants of the springs restraining motion in 
8 and 4 coordinates. 

Substitution of Eqs. (3 .7 ) ,  (3.8) and ( 3 . 9 )  into Lagrange's equation, 

where q1 = 0, 92 = 8, q3 = $, yields the following differential equations, 

+ keQ = 0 
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= o  
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where 

a1 = -sin 8 sin 7 + COS 8 COS a COS 7 

a2 = cos 8 sin 7 + sin 8 cos cos 7 

SPECIXIZATIGN TO THE CASE OF CGNSTALT SHAFT SPEED 

The problem is now specialized to the case of constant rotational velocity .. 
of the shaft by setting Jr = 0, $ = R, and the equations are put into a nondimen- 
sional form by defining the nondimensional parameters, 

and introducing the nondimensional time variable, 

It is seen that p is the nondimensional radius of gyration of the mass about 
the rod axis, e is the nondimensional offset of the mass center of gravity from 
the rod axis and & and & are respectively the nondimensional natural fre- 
quencies in restrained bending and restrained torsion when the shaft is not ro- 
tating. 

- 

Division of Eq. (3.11) by O%r2 and Eq. (3.12) by fi21 now yields, 
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where primes denote differentiation with respect to T, and a1 and a;! are as 
defined in the preceding section. 

Recognizing that constant shaft speed represents the limiting case of in- 
finite flywheel inertia, the term IF$ in Eq. (3.13) can be seen to remain finite 
and equal to the shaft torque, which my then, from Eq. (3 . l3) ,  be written in 
the following nondimensional form, 
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MT = -sin Q cos 7+Ea2 cos(p+d) 

is2 sin( p+d) (-sin( p+b)sin a 

c - 

+ 

where 

and % is the dimensional torque. 

To facilitate solution, it is desirable to rearrange Eqs. (3.14) and (3.15) 
in the form, 

where 
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+ (-sin(p+b)sin CY cos y+al cos(B+~))(cos(B+b)sin CY cos y + a l  sin(p+b)) 

Solving Eqs (3.17) and (3.18) for Q" and 6" in terms of 8 and 4 and their 
first derivatives yields the differential equations in the following form, 

Equations (3.19) and (3.20) are now in suitable form for solution on a 
digital or analog computer. 

45 



SOLUTION OF THE PSEUDO-STATIC PROBLEM 

It is of interest to determine the static configuration of the rotating 
model, that is, the static displacements under the action of centrifugal 
forces. This problem may be termed the pseudo-static problem. Its solution 
permits the setting up and solution of linearized differential equations for 
small motions about the pseudo-static configuration. 

The appropriate equations are obtained by eliminating all terms contain- 
ing derivatives of @ and 4 from Eqs. (3.17) and (3.18), yielding, 

q d S  + fl0 = o .  (3.22) 

These equations are nonlinear, with fe and flo being transcendental func- 
tions of the dependent variables. Since it is not feasible to obtain an ana- 
lytical solution in closed form, the following iterative procedure was applied. 

Equations (3.21) and (3.22) are linearized with respect to departures AQ 
and A# from trial values 8, and dn, respectively, of the variables, yielding, 

-2 ut#, -k + f1on + (%)n AQ + (9) Ad = 0 (3.24) 
n 

where subscript n denotes values at 8 = @,, d = dn. 
Equations (3.23) and (3.24) are now rearranged in the form, 

where 
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- 2 2  
= 

- F2a2 [[cos2(p+b)-siri2(p++))sin CY cos 7+2al sin(B+b)cos(@++j 

e(-al sin(p+b)sin CY cos r+(al-a2)cos(p+b)) 

- 
a2(cos(p+b)sin CY cos 7+al sin ( ~ + b ) )  e 

E2 
- - - -  

2 - (cos(B+d)sin Q! cos 7+al sin(p4) J 

+ [-sin(B+b)sin CY cos 7-1 

Solution of Eqs.  (3.25) and (3.26) for A 0  and A b  yields, 

-e4ne2nte5nf12n 
AQ = 

e3n 

where 



e2 = + f14 

Equations (3.27) and (3.28) may be applied in conjunction with the iter- 
ation formulae , 

using as initial values, 81 = 0, 81 = 0. 
verge rapidly in the cases that have been considered in the present work. 

The process has been found to con- 

FORMULATION AND SOLUTION OF THE LINEARIZED EQUATIONS 

In order to assess the significance of nonlinear effects in the problem 
under consideration, it is desirable to obtain also solutions to linearized 
equations for small perturbations 5 and 4 from the pseudo-static configuration. - 

Application of small perturbation theory to Eqs. (3.17) and (3.18) yields, 

in which subscript s denotes values corresponding to the pseudo-static config- 
uration 8 = Q s ,  6 = 8,. 

Putting Eqs. (3.31) and (3.32) into operator form, using symbol p to de- 
note the differential operator, and expanding the determinant of coefficients, 
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the  following c h a r a c t e r i s t i c  equation i s  obtained, 

2 clp4 + c2p + c 3  = o (3 .33)  

where 

c 1  = fl, - fZSfTS 

The terms i n  p and p3 are seen t o  vanish. 

The roo t s  of t h i s  equation a r e  

and the c h a r a c t e r i s t i c  frequencies a r e  given by 

The c h a r a c t e r i s t i c  mode shapes may be determined by a s s a n g  a solut ion 
of the form, 

49 



introducing Eqs. (3.36) and (3.37) i n t o  Eq. .(3.31), and equating the sum of 
t h e  coeff ic ients  of the  cos ZT and the  s i n  Z-r terms respec t ive ly  t o  zero, t h e  
following r e s u l t  is  obtained, 

(3.38) 

The mode shapes may be expressed a l t e r n a t i v e l y  i n  the  form, 

where, from Eq. (3.37) it i s  seen t h a t  &bo i s  the  r e l a t i v e  amplitude of d i s -  
placements i n  the  two coordinates and E i s  the  phase l a g  of t h e  o s c i l l a t i o n  i n  
the  8-coordinate r e l a t i v e  t o  t h a t  i n  the  @-coordinate. 

A so lu t ion  involving only one cha rac t e r i s t i c  mode of o s c i l l a t i o n  may be 
obtained by se l ec t ing  as i n i t i a l  conditions,  

where <o may be se lec ted  a r b i t r a r i l y  Kithin t_he l imi t a t ions  imposed by t h e  as- 
sumption of small per turbat ions,  and do and 86 a r e  then determined from Eqs. 
(3.38) and (3.39).  

I t  should be noted t h a t  t he  exis tence of a phase difference between o s c i l -  
latLon i n  the two coordinates i s  associated with the  presence of the  terms 
f4sb1 and feSGl i n  Eqs. (3.31) and (3.32) respec t ive ly .  
i n  the terms i n  e$ and $$ i n  Eqs. (3.11) and ( 3 . l 2 ) ,  which are due t o  the  pres-  
ence of Cor io l i s  forces .  

These terms o r ig ina t e  

DISCUSSION OF RESULTS 

A s e r i e s  of computations on the  simple m o d e l  were performed using an  auto-  



matic digital computer. There computations were limited to the case of con- 
stant rotational velocity of the shaft and zero built-in coning angle ( 7  = 0). 

The pseudo-static configuration was determined by means of the iterative 
procedure developed earlier, and corresponding characteristics of the linear- 
ized system for small perturbations from this configuration were computed. - 
each - case additional computations were performed in which the terms f4s&1 and 
feSQ' in Eqs .  (3.31) and (3.32) were omitted. A s  discussed previously, these 
terms represent the influence of Coriolis forces, so that a comparison of re- 
sults obtained with and without their inclusion provides a means of assessing 
the importance of the Coriolis forces. 

In 

These results are presented in Figs. .3.2 to 3.8 inclusive. 
and 3.3 show the effect of varying the mass offset parameter e, with the param- 
eter Po, representing the nondimensional radius of gyration of the mass about 
its center of gravity, and the parameters, a, p, & and (.t being maintained 
constant. 
of a constant value for (.t implies that the variation of e does not involve 
merely a shifting of the mass relative to the supporting arm but involves also 
changes in m or k& or both. The value of To selected for this case represents 
a rather extreme value, applicable to a short, wide blade. 

Figures 3.2 

Since the parameter T must be varied accordingly, the maintenance 

Figure 3.2 shows the substantial pseudo-static deformation occurring in 

Fig. 3.2. Effect of mass offset on pseudo-static 
displacements of model. 
113, 

CL = JO", f3 = 15" , (.b = 
= 1, 50 = 0.1732. 



t h i s  case. It should be noted t h a t  t he  s t a t i c  t w i s t  decreases with increase 
i n  o f f s e t ,  when the  center  of g rav i ty  of the mass i s  behind t h e  e l a s t i c  ax i s .  
This occurs despi te  t he  f a c t  t h a t  t he  r e l a t i v e  values of the  moment of i n e r t i a  
and tors iona l  s t i f f n e s s  about t he  supporting arm rennin the  same because of 
t he  constancy of %, which f a c t  implies t h a t  cen t r i fuga l  twis t ing  moment, be- 
fo re  deformation, remains t h e  same. It must be concluded t h a t  t he  va r i a t ion  
i n  twist  i s  associated with a component of cen t r i fuga l  force normal t o  the  
coning surface on which the supporting a r m  revolves.  This e f f e c t  i s  in t ro -  
duced through the  term i n  mre$2 i n  Eq. (3.12) and terms der iving from it i n  
later forms. It has been ca l l ed  "cent r i fuga l  force  coupling" i n  R e f .  2 ,  and 
shown there  t o  have a subs t an t i a l  e f f e c t  on na tu ra l  coupled frequencies of vi-  
brat ion.  I n  the  present case,  s ince y = 0 ,  the  coning of the supporting a r m  
i s  associated so le ly  with the  displa6ement 8,. 
value f o r  (a+@+bs), t h i s  e f f e c t  opposes t h a t  of cen t r i fuga l  twis t ing  moment. 
It can be expected t o  be more pronounced i n  the case of blades with b u i l t - i n  
coning angle.  

With pos i t ive  0, and a pos i t ive  

Figure 3.3 shows the  e f f e c t  of mass o f f s e t  on the  na tura l  v ibra t ion  char- 
a c t e r i s t i c s  of t he  system l inea r i zed  with respect  t o  the  pseudo-static config- 
urat ion.  A s  can be expected, it i s  seen t h a t  t he  increased coupling between 
bending and to r s ion  associated with increasing mass o f f s e t  separates  the na tu ra l  
frequencies and a l t e r s  the na tu ra l  mode shapes. 

I t  i s  seen a l s o  t h a t  the Cor io l i s  forces  introduce subs t an t i a l  phase d i f -  
ferences between motion i n  the two coordinates,  p a r t i c u l a r l y  i n  the  case of 
the  first or predominantly bending mode, where the  phase angle i s  l a rge  through- 
out  the range of F considered. I n  t h e  case of t h e  second mode, where to r s iona l  
motion predominates, the  phase angle i s  subs t an t i a l  only a t  small values of e. 
When e i s  zero the  only coupling between bending and to r s ion  - i s  through - the  
Coriol is  forces ,  and the  phase d i f fe rence  i s  then go", 6 leading 8 by t h i s  
amount i n  the  case of t he  f i r s t  mode and lagging by t h i s  amount i n  the  case of 
t he  second mode. Furthermore, t h e  Cor io l i s  forces  are seen t o  have a substan- 
t i a l  e f f e c t  on the  mode shape of t he  first mode and a somewhat modest e f f e c t  
on the corresponding frequency. The corresponding e f f e c t s  on the  second mode 
and frequency a r e  seen t o  be small or negl ig ib le .  It should be noted here t h a t  
the apparent absence i n  some cases of curves associated with neglect  of Cor io l i s  
forces i s  explained by the  f a c t  t h a t  such curves a r e  indis t inguishable  from 
the  corresponding so l id- l ine  curves, and the  e f f e c t  of these forces  i s  thus very 
small. 

Figures 3.4 and 3.5 provide results corresponding t o  those of Figs .  3.2 
and 3.3 f o r  a d i f f e r e n t  case,  namely one involving a much smaller value of 
Po and consequently more r e a l i s t i c  i n  r e l a t i o n  t o  propel le r  or hel icoptor  
ro tor  blades.  
are considerably reduced, but  s t i l l  subs t an t i a l  with respect  t o  phase d i f f e r -  
ences i n  the  f i r s t  mode. 

Similar t rends are observed, except t h a t  Coriol is  force e f f e c t s  
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Figure 3.6 shows the effect of varying the bending hinge orientation 
angle while maintaining the orientation of the principal axis of the mass fixed. 
This involves varying ff and @ so that a+@ remains constant, and simulates a sit- 
uation in which mean blade angle is kept constant while built-in twist is varied. 
A l l  other parameters were maintained constant. 
shown, as variations in those parameters were small. For a variation of ff from 
15" to 45",  8,  varied from 0.78" to 0.97" and ds varied from -6.50" to -6.60". 
It is seen from Fig. 3.6 that first mode characteristics are affected - very sub- 
stantially by changes in ff, the phase difference between the 5 and 4 motions 
especially varying over a very wide range. The effect on second mode charac- 
teristics is much smaller, although still considerable. 

Curves of 8, and 4, are not 

Figures 3.7 and 3.8 show the effect of varying the rotational velocity of 
the shaft while other parameters remain constant. The information in Fig. 3.7 
is principally of value in estimating the pseudo-static torsional deformation 
corresponding to a given rotational velocity. This deformation can be expected 
to depend primarily on the parameter 4 in the case of a blade without built- 
in coning angle, although from results discussed earlier it can be seen also to 
depend somewhat on the'parameters e and &. From Fig. 3.7 it can be seen that 
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Fig. 3.7. Effect of rotational velocity on pseudo-static 
displacements of model. = 3, CY = 45", B = -l5", 6 = 
0 .2 ,  e = -0.1. 

the torsional displacement will exceed 20$ of the initial blade angle (CY+@) if 
& is less than about 2, that is, if the rotational velocity is greater than 
about one-half the value of restrained torsional frequency corresponding to zero 
rotational velocity. 

Figure 3.8 indicates an increasing prominence of torsion relative to bend- 
ing in both modes as rotational velocity becomes large. It indicates further 
a marked sensitivity of the phase difference between coordinates in the first 
mode to variation in rotational velocity, at least in a limited range of rota- 
tional velocity. The phase angle is seen to approach zero at large values of 
rotational velocity. A somewhat different situation is seen to exist in the 
case of the second mode, where the phase angle increases with increase in ro- 
tational velocity. 

Digital computer solutions to the nonlinear differential equations were 
also obtained, using a Runge-Kutta procedure. Initial conditions were estab- 
lished on the basis of natural vibration characteristics determined from the 
linearized equations, that is, by applying Eqs. (3.42), using values from Eqs. 
(3.38) and ( 3 . 3 9 )  and the pseudo-static displacements. With such initial con- 
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d i t i o n s ,  the  l i nea r i zed  system responds i n  only one of the natural modes, and 
comparison with the  corresponding response of the nonlinear system provides a 
means of assessing t h e  extent  t o  which nonlinear e f f e c t s  d i s t o r t  the motion. 

Results were obtained f o r  only one case and a r e  shown i n  Fig.  3.9. Figure 
3.9(a) i l l u s t r a t e s  the  response of t h e  f i rs t  mode when the in i t ia l  bending d is -  
placement from the  pseudo-static configuration i s  10". 
bending coordinate predominates i n  that mode and i t s  t i m e  h i s t o r y  is seen t o  be 
d i s t o r t e d  only s l i & t l y  by nonlinear e f fec ts .  There i s  a s l i g h t  increase i n  
period and a very s l i g h t  but i r r egu la r  var ia t ion i n  amplitude. 
response i s  seen t o  be s t rongly influenced by nonlinear e f f e c t s  i n  a mnner  
which suggests that the re  is  subs t an t i a l  coupling with the  second mode. The 
s l i g h t  va r i a t ion  i n  amplitude of the bending motion is  l i k e l y  associated with 
t h i s  coupling. 

Displacement i n  the  

The to r s iona l  

The response i n  the second mode f o r  an initial bending displacement of 2" 
from the pseudo-static configuration i s  shown i n  Fig.  3 .9(b) .  
displacement i n  the  t o r s i o n a l  coordinate predominates and has an amplitude of 
about 22.5". 
by nonlinear e f f e c t s ,  but  otherwise only a s l i g h t  d i s t o r t i o n  of the motion i n  
both coordinates.  Again, it i s  l i k e l y  t h a t  t h i s  d i s t o r t i o n  is due t o  coupling 
with the first mode. 

I n  t h i s  case, 

It is  seen t h a t  there  i s  an appreciable increase i n  period caused 

The solut ions were not ca r r i ed  far enough t o  a s c e r t a i n  whether there  i s  
a decay o r  divergence of the o s c i l l a t i o n s .  The f a c t  t h a t  such may e x i s t  is not 
inconceivable, i n  view of the  f a c t  t h a t  t h e  system is  not necessar i ly  conserva- 
t i v e .  It has been seen t o  be conservative when l inea r i zed  with respect  t o  
small perturbat ions from the pseudo-static configuration. However, with impo- 
s i t i o n  of t h e  condition of constant s h a f t  ro ta t iona l  ve loc i ty  it i s  a driven 
system, and it i s  possible t h a t  nonlinear e f fec ts  may r e s u l t  i n  a t r a n s f e r  of 
energy t o  o r  from it through the shaft. 

The r e s u l t s  obtained indicate  that, a t  least f o r  the case considered, any 
such divergence or  decay w i l l  be small and probably represent a negl igible  e f -  
f e c t  i n  comparison with aerodynamic e f f e c t s  i n  t h e  case of an a c t u a l  blade. 
It is possible  t h a t  a d i f f e r e n t  choice of parameters o r  the introduction of 
b u i l t - i n  coning may produce a d i f f e r e n t  result. 
t i g a t i o n .  

This requires f u r t h e r  inves- 

On the basis of the present r e s u l t s  it appears t h a t  the e f f e c t  of Coriol is  
forces  i s  l i k e l y  t o  have a greater  p rac t i ca l  s ignif icance than the e f f e c t  of 
nonl inear i ty ,  p a r t i c u l a r l y  since it does not depend upon the existance of l a rge  
motions. This r e l a t e s  mainly t o  the problem of blade f l u t t e r ,  s ince the f l u t t e r  
phenomenon i s  highly sens i t ive  t o  phase differences between motion i n  bending 
and tors ion .  
forces  may conceivably a l t e r  the balance i n  the f l u t t e r  problem s u f f i c i e n t l y  t o  
change the conditions f o r  f l u t t e r  s ign i f icant ly .  

The phase differences associated with t h e  presence of Coriol is  
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Other effects which have not been considered in the present study, but 
which can be expected to be of considerable importance in some cases, are 
those of nonlinearity of the torsional spring and of centrifugal tension on 
torsional stiffness and on pseudo-static deformation, as discussed in the 
Introduction. Their introduction into the present analysis should not re- 
sult in undue complication and would represent an appropriate and desirable 
extension of the present work. 
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4. CONCLUDING RFSIARKS 

A p r a c t i c a l  numerical method, su i tab le  f o r  implementation on an automatic 
d i g i t a l  computer, has been developed f o r  determining the  natural vibrat ion 
c h a r a c t e r i s t i c s  of twisted ro t a t ing  and nonrotating blades i n  coupled bend- 
ing and tors ion .  A l imited numerical study indicates  t h a t  the method is an 
e f f i c i e n t  one f o r  including t h e  e f f e c t s  of bendil7g-torsion coupling and pre- 
t w i s t .  The nature of the  coupling is  zomplicated and a much more extensive 
parametric study would be needed i n  order t o  draw general conclusions. 
can be sa id ,  however, t h a t  cen t r i fuga l  force coupling can have an appreciable 
e f f e c t  when there  is  a subs tan t ia l  o f f s e t  of the mass ax is  from the e l a s t i c  
a x i s .  

It 

I n  order t o  invest igate  some e f f e c t s  of nonl inear i ty  and Coriol is  forces  
i n  the r o t a t i n g  blade vibrat ion problem, a study has been made of a simple 
model with a small number of degrees of freedom. Computations performed on 
t h i s  model i nd ica t e  the following: 

(1) There is an e f f e c t  of cen t r i fuga l  force,  apa r t  from the  familiar 
cen t r i fuga l  tw i s t ing  moment, on t h e  tors ional  deformation when the  mass axis  
of the  blade i s  o f f s e t  from the  e l a s t i c  axis .  It may, i n  some cases, modify 
the s t a t i c  deformation of the r o t a t i n g  blade subs tan t ia l ly ,  and tends t o  i n -  
troduce addi t ional  coupling between bending and to r s ion  when the blade i s  
vibrat ing,  as discussed a l s o  i n  the case of the continuous blade. 

( 2 )  The presence of Coriol is  forces  causes a phase difference between 
the bending and to r s iona l  o s c i l l a t i o n s  which i s  equal t o  9" when the mass 
and e l a s t i c  axes a r e  coincident.  This phase difference decreases when the 
m a s s  and e l a s t i c  axes a r e  not coincident, but remains subs t an t i a l  i n  the 
case of a na tu ra l  mode of the model consisting primarily of bending. 

( 3 )  Nonlinear e f f e c t s  f o r  l a rge  motions tend t o  change the natural fre- 
quencies of the system s l i @ t l y  and introduce some coupling between the  
natural  v ib ra t ion  modes associated with solution of the l i nea r i zed  equations. 
A l imi t ed  amount of r e s u l t s  did not provide any evidence of decay o r  diver- 
gence of the  f r e e  vibrat ions of  the model. 



APPENDIX A 

DIFFERENTIAL EQUATIONS OF MOTION 

The d i f f e r e n t i a l  equations f o r  free motion of a r o t a t i n g  twisted blade 
w i t h  o f f s e t  mass and e l a s t i c  axe8 are, from R e f .  2 ,  w i t h  some changes i n  
notation, 

- O2p[(kf-k;)sin B cos ,5+eeo s i n  83 

+ (n'pxe cos p ) '  + Pp(eo+e  cos 8 )  

An explanation of the  o r ig in  of the various terms i n  the  equations i s  
given i n  R e f .  2 .  The i n t e g r a l s  which def ine the  sec t ion  constants B1 and B2 
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are given below 

A l l  other symbols are defined in the list of symbols. The coordinate system 
is as shown in Fig. 2.1. 

I It should be noted that Eqs.  (Al) are f o r  small displacements from the 
undeformed configuration of the blade when it is not rotating. The analysis 
of the present report linearizes the problem with respect to s a l 1  displace- 
ments from the steady-state deformed configuration of the rotating blade. 



APPENDIX B 

RESULTANT LOADINGS 

The r e su l t an t  loadings per u n i t  length i n  the x, 5 ,  and 7 d i rec t ions  have 
been obtained ir: Ref. 2 f o r  a r o t a t i n g  twisted blade with o f f s e t  mass and 
e l a s t i c  axes. The loads include the i n e r t i a l ,  cen t r i fuga l  and Coriol is  force 
terms. In t h e  notation of the present report  they a r e  
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In the following, we eliminate terms in px which are dependent on d i s -  
placement variables and their derivatives, since these lead to nonlinearities 
in subsequent analysis, and terms in all force and moment expressions which 
involve u and its derivatives and first derivatives of the remaining displace- 
ment variables. We also eliminate terms involving p ' ,  since these terms arise 
when 6; and 6; are derivatives referred to the axes 7 and ( rotating about the 
x axis. 
derivatives with respect to locally fixed axes. 

In the lumped parameter treatment, Si and 6; can be considered to be 

.. 
pq = -p62 - i F p  sin p (cos B~ + $p (cos2 p ~ 3 ~  

.. 
= -pgl + @ p  (sin2 - p p  sin p (cos E$ 62 - peb ps 
+ p e(sin2 @-cos2 p )  - eo cos B 4 - i F p  sin @(e cos p+eo) 

0 2 )  
2 c  3- 

.. 
QX = -pe61 + fipe (sin2 - s2pe sin B (cos B2 

I. 3 r - 3 y e e o  cos B+(I~-I~) cos 28 # - ( I (+ I~ )#  

- 8 sin p peeo+(Ic-Iq) cos 13 c 

Now, if we consider the matrix equation 

where ( A }  is 
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v2 II M2 

Q ;I) rd 

and ( A ) N  r e f e r s  t o  the  value of these quan t i t i e s  a t  s t a t i o n  N j u s t  outboard 
of the mass, and ( A ) N  r e f e r s  t o  the  values j u s t  inboard of the  mass, it f o l -  
lows t h a t  

h 
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APPENDIX C 

DEFORMATION OF A BLADE SEGMENT 

Consider a segment of a weightless beam f o r  which the  values of t h e  mo- 

Then moments and torques a t  o ther  points  along 
myGI,  toS3ve, spsyr, and/;Ynsion a t  a s t a t i o n  N a r e  given as M ~ ( N ) ,  M ~ ( N ) ,  
Q\" I ,  V1\IY I ,  V 2 \ I y  I and T\"  I .  

the  segment are 

where U i N i  and W i N j  are the  contr ibut ions of the  cen t r i fuga l  force coupling 
as explained i n  Appendix D, s i s  the longi tudina l  coordinate measured from 
s t a t ion  N toward the root ,  and primes denote d i f f e r e n t i a t i o n  with r e spec t  
t o  s. These same quan t i t i e s  i n  terms of 61 and 82 f o r  a twisted blade are 

For a s t r a i g h t  segment Eqs. (C2 reduce to 



Eliminating s teady-s tate terms and combining Eqs . ( C l )  and (CJ), 

where 

a1 = - 
E11 

These equations may be solved as they stand; however, considerable sim- 
plification can be achieved at a modest sacrifice in accuracy by replacing 
the term by This modifies the second of Eqs. ( C 4 )  to read 
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where 

The charac te r i s t ic  equation f o r  the new s e t  becomes 

fop4 + flp2 + f2 = o 

where 

The roots o f  t h i s  equation a r e  then 

When the so lu t ion  i s  ca r r i ed  out,  with the elements of ( A ) ( N )  as i n i t i a l  values, 
and s is taken equal t o  I ,  the  following form f o r  the so lu t ion  results 

j =1 

j =1 
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j =1 

L 
j =1 

where the Eij are presented in Eq. (2.6) in the body of the report and Aj are 
the elements of (A)(N) given in Eq. (2.1). 

The remaining Eij elements are found from the following equations which 
apply across each bay 

It should be noted that the bending moment and torque quantities in Eqs. 
(Cg) by definition do not include the contributions of the centrifugal force 
displaced to the elastic axis and of centrifugal coupling. 
tions are introduced separately through satisfaction of Eqs. (Cl) in the solu- 
tion for the deformation variables. 

These contribu- 
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APPENDIX D 

CENTRIFUGAL FORCE COUPLING 

As shown i n  Ref. 2, t he re  i s  a type of coupling between bending and t o r -  
s ion  associated with the presence of cen t r i fuga l  forces .  Expl ic i t  considera- 
t i o n  must be given t o  the  der iva t ion  of t he  terms associated with t h i s  coupling. 

If x1 i s  used t o  denote the  s t a t i o n  where cen t r i fuga l  force i s  a c t i n g  and 
x the  s t a t i o n  where bending moment i s  measured, the  components of bending mo- 
ment associated with o f f s e t  of mass center  from the  e l a s t i c  a x i s  of t he  ro-  
t a t i n g  blade may be wr i t t en  as follows: 

where subscr ip t  1 refers t o  values a t  XI. 

Assuming t o  be a small angle and el iminat ing higher order  terms, Eqs. 
(D1 ) become, 
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I n  each case, the f i r s t  and fourth terms represent s teady-state  moments. 
An examination of Appendix B shows t h a t  t h e  term &pex i n  q 

(d) matrix. 

will give r i s e  
i n  the t o  these moments. They a r e  taken i n t o  account through the e i ement 

The t h i r d  and s i x t h  terms i n  each component represent the e f f e c t  of t o r -  
s iona l  displacement of the blade mass on bending about the  t o r s i o n a l l y  undis- 
placed posi t ions of the 7 and 5 axes i n  t h e  M 1  and & components respectively.  
This e f f e c t  can be taken i n t o  account by an appropriate modification of the 
F ]  matrix, incorporating a change i n  bending moment across each mass given 

by 

yielding the  element 

The second and f i f t h  terms represent the e f f e c t  of cen t r i fuga l  forces 
ac t ing  on the t o r s i o n a l l y  undisplaced masses between x and R on bending about 
the  t o r s i o n a l l y  displaced 7 and { axes i n  the M 1  and & components respectively.  
They must be taken i n t o  account i n  the development of the  [E] matrix. 
of the  lumped mass model, the contribution to  the  bending moments i n  the bay 
between the nth and ( n + l ) t h  masses is  

I n  terms 
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There i s  correspondingly an e f f e c t  of bending on torque. It i s  associated 
with t h e  f a c t  t h a t  with a bending slope 6 ;  a t  s t a t i o n  x the  cent r i fuga l  force  
CPplxldxl on a n  element dxl  a t  s t a t i o n  XI outboard of s t a t i o n  x has a component 
-@p1xldx16; normal t o  the  7-axis i n  t h e  plane of the cross  sec t ion  a t  s t a t i o n  
x. 
t h a t  the  contr ibut ion t o  the  torque from t h i s  source may be wr i t ten ,  

The moment a r m  of t h i s  force  about the  e l a s t i c  a x i s  is  el  cos(p-p l ) ,  so 

Applying t h i s  r e s u l t  t o  the  lumped mass model, the contr ibut ion t o  the 
torque i n  the bay between the nth and ( n + l ) t h  masses i s  

and i s  taken i n t o  account i n  t h e  development of t he  [ E ]  matrix i n  Appendix C .  
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